By Topic

Optimal Power Flow Management for Grid Connected PV Systems With Batteries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Riffonneau, Y. ; Grenoble Electr. Eng. Lab. (G2ELAB), Univeristy Joseph Fourier, St. Martin d''Hères, France ; Bacha, S. ; Barruel, F. ; Ploix, S.

This paper presents an optimal power management mechanism for grid connected photovoltaic (PV) systems with storage. The objective is to help intensive penetration of PV production into the grid by proposing peak shaving service at the lowest cost. The structure of a power supervisor based on an optimal predictive power scheduling algorithm is proposed. Optimization is performed using Dynamic Programming and is compared with a simple ruled-based management. The particularity of this study remains first in the consideration of batteries ageing into the optimization process and second in the “day-ahead” approach of power management. Simulations and real conditions application are carried out over one exemplary day. In simulation, it points out that peak shaving is realized with the minimal cost, but especially that power fluctuations on the grid are reduced which matches with the initial objective of helping PV penetration into the grid. In real conditions, efficiency of the predictive schedule depends on accuracy of the forecasts, which leads to future works about optimal reactive power management.

Published in:

Sustainable Energy, IEEE Transactions on  (Volume:2 ,  Issue: 3 )