By Topic

Cascade Architecture for Lateral Control in Autonomous Vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
JoshuĂ© Perez ; Industrial Computer Science Department, Centre of Automation and Robotics (CAR), Universidad Politécnica de Madrid, Consejo Superior de Investigaciones Científicas, (UPM-CSIC), La Poveda-Arganda del Rey, Madrid, Spain ; Vicente Milanes ; Enrique Onieva

Research on intelligent transport systems (ITSs) is steadily leading to safer and more comfortable control for vehicles. Systems that permit longitudinal control have already been implemented in commercial vehicles, acting on throttle and brake. Nevertheless, lateral control applications are less common in the market. Since a too-sudden turn of the steering wheel can cause an accident in a few seconds, good speed and position control of the steering wheel is essential. We present here a new cascade control architecture based on fuzzy logic controllers that emulate a human driver's behavior. The control architecture was tested on a real vehicle at different vehicle speeds. The results showed the use of a straightforward and intuitive fuzzy controller to give good performance.

Published in:

IEEE Transactions on Intelligent Transportation Systems  (Volume:12 ,  Issue: 1 )