By Topic

Wind Power Prediction by a New Forecast Engine Composed of Modified Hybrid Neural Network and Enhanced Particle Swarm Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Amjady, N. ; Dept. of Electr. Eng., Semnan Univ., Semnan, Iran ; Keynia, F. ; Zareipour, H.

Following the growing share of wind energy in electric power systems, several wind power forecasting techniques have been reported in the literature in recent years. In this paper, a wind power forecasting strategy composed of a feature selection component and a forecasting engine is proposed. The feature selection component applies an irrelevancy filter and a redundancy filter to the set of candidate inputs. The forecasting engine includes a new enhanced particle swarm optimization component and a hybrid neural network. The proposed wind power forecasting strategy is applied to real-life data from wind power producers in Alberta, Canada and Oklahoma, U.S. The presented numerical results demonstrate the efficiency of the proposed strategy, compared to some other existing wind power forecasting methods.

Published in:

Sustainable Energy, IEEE Transactions on  (Volume:2 ,  Issue: 3 )