By Topic

Identification of Parametric Underspread Linear Systems and Super-Resolution Radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bajwa, W.U. ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Gedalyahu, K. ; Eldar, Y.C.

Identification of time-varying linear systems, which introduce both time-shifts (delays) and frequency-shifts (Doppler-shifts), is a central task in many engineering applications. This paper studies the problem of identification of underspread linear systems (ULSs), whose responses lie within a unit-area region in the delay-Doppler space, by probing them with a known input signal. It is shown that sufficiently-underspread parametric linear systems, described by a finite set of delays and Doppler-shifts, are identifiable from a single observation as long as the time-bandwidth product of the input signal is proportional to the square of the total number of delay-Doppler pairs in the system. In addition, an algorithm is developed that enables identification of parametric ULSs from an input train of pulses in polynomial time by exploiting recent results on sub-Nyquist sampling for time delay estimation and classical results on recovery of frequencies from a sum of complex exponentials. Finally, application of these results to super-resolution target detection using radar is discussed. Specifically, it is shown that the proposed procedure allows to distinguish between multiple targets with very close proximity in the delay-Doppler space, resulting in a resolution that substantially exceeds that of standard matched-filtering based techniques without introducing leakage effects inherent in recently proposed compressed sensing-based radar methods.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 6 )