By Topic

Natural Image Segmentation Based on Tree Equipartition, Bayesian Flooding and Region Merging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Costas Panagiotakis ; Multimedia Informatics Laboratory of Computer Science Department, University of Crete, Heraklion, Greece ; Ilias Grinias ; Georgios Tziritas

We propose a general purpose image segmentation framework, which involves feature extraction and classification in feature space, followed by flooding and merging in spatial domain. Region growing is based on the computed local measurements and distances from the distribution of features describing the different classes. Using the properties of the label dependent distances spatial coherence is ensured, since the image features are described globally. The distribution of the features for the different classes are obtained by block-wise unsupervised clustering based on the construction of the minimum spanning tree of the blocks' grid using the Mallows distance and the equipartition of the resulting tree. The final clustering is obtained by using the k-centroids algorithm. With high probability and under topological constraints, connected components of the maximum likelihood classification map are used to compute a map of initially labelled pixels. An efficient flooding algorithm is introduced, namely, Priority Multi-Class Flooding Algorithm (PMCFA), that assign pixels to labels using Bayesian dissimilarity criteria. A new region merging method, which incorporates boundary information, is introduced for obtaining the final segmentation map. Therefore, the merging stage is based on region features and edge localization. Segmentation results on the Berkeley benchmark data set demonstrate the effectiveness of the proposed methods.

Published in:

IEEE Transactions on Image Processing  (Volume:20 ,  Issue: 8 )