Cart (Loading....) | Create Account
Close category search window

Supervised gene clustering for extraction of discriminative features from microarray data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Das, C. ; Dept. of Comput. Sci. & Eng., Netaji Subhash Eng. Coll., Kolkata, India ; Maji, P. ; Chattopadhyay, S.

Among the large number of genes presented in microarray data, only a small fraction of them are effective for performing a certain diagnostic test. However, it is very difficult to identify these genes for disease diagnosis. In this regard, a new supervised gene clustering algorithm is proposed to cluster genes from microarray data. The proposed method directly incorporates the information of response variables in the grouping process for finding such groups of genes. Significant cluster representatives are then taken to form the reduced feature set that can be used to build the classifiers with very high classification accuracy. The effectiveness of the proposed method, along with a comparison with existing methods, is demonstrated on three microarray data sets based on predictive accuracy of the naive Bayes' classifier, the K-nearest neighbor rule, and the support vector machine.

Published in:

India Conference (INDICON), 2010 Annual IEEE

Date of Conference:

17-19 Dec. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.