By Topic

Identification of servo-driven inverted pendulum system using neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sutradhar, A. ; Dept. of Electr. Eng., Bengal Eng. & Sci. Univ., Howrah, India ; Sengupta, A. ; Challa, V.R.

In the present work, artificial neural network (ANN) has been used to identify a servo-driven inverted pendulum system. The inverted pendulum is a benchmark problem of nonlinear multivariable system with inherent instability. The multi variable system has been considered with servomotor supply voltage as the input and four states of the system being the outputs. An LSVF controller has been used to stabilize the system for identification in closed loop. Here the non linear model of the inverted pendulum has been simulated. The Levenberg-Marquardt back-propagation method has been used for the non linear system identification via Feed-forward Neural Network (FNN). The neural network is trained using the error between the model's outputs and the plant's actual outputs. The results show good match between predicted and actual outputs.

Published in:

India Conference (INDICON), 2010 Annual IEEE

Date of Conference:

17-19 Dec. 2010