By Topic

Unified Bit-Based Probabilistic Data Association Aided MIMO Detection for High-Order QAM Constellations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shaoshi Yang ; School of Electronics and Computer Science, University of Southampton, Southampton, UK ; Tiejun Lv ; Robert G. Maunder ; Lajos Hanzo

A unified bit-based probabilistic data association (B-PDA) detection approach is proposed for multiple-input-multiple-output (MIMO) systems employing high-order rectangular quadrature amplitude modulation (QAM). The new approach transforms the symbol detection process of QAM to a bit-based process by introducing a unified matrix representation (UMR) of QAM. Both linear natural and nonlinear binary reflected Gray bit-to-symbol mappings are considered. With the aid of simulation results, we demonstrate that the linear-natural-mapping-based B-PDA approach typically attained an improved detection performance [measured in terms of both bit error ratio (BER) and symbol error ratio (SER)] in comparison with the conventional symbol-based probabilistic data association (PDA)-aided MIMO detector, despite its dramatically reduced computational complexity. The only exception is that, at low SNRs, the linear-natural-mapping-based B-PDA is slightly inferior in terms of its BER to the conventional symbol-based PDA using binary reflected Gray mapping. Furthermore, the simulation results show that the linear-natural-mapping-based B-PDA MIMO detector may approach the best-case performance provided by the nonlinear binary reflected Gray-mapping-based B-PDA MIMO detector under ideal conditions. Additionally, the implementation of the B-PDA MIMO detector is shown to be much simpler in the case of the linear natural mapping. Based on these two points, we conclude that, in the context of the uncoded B-PDA MIMO detector, it is preferable to use the linear natural bit-to-symbol mapping, rather than the nonlinear Gray mapping.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:60 ,  Issue: 3 )