By Topic

Statistical Analysis of Self-Oscillating Power Amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Foad Arfaei Malekzadeh ; Electr. Eng. Dept., Eindhoven Univ. of Technol., Eindhoven, Netherlands ; Reza Mahmoudi ; Arthur Roermund

Self-oscillating power amplifiers (SOPA) are promising solutions for amplification of high crest factor signals, with good linearity and efficiency, as a result of using a switch mode amplifier inside the oscillating loop. The lack of comprehensive and statistical analysis method complicates the design and analysis procedure. In this paper, a new statistical approach is presented to analyze the nonlinear behavior of SOPA, to predict the required system metrics like EVM and ACPR. The approach is an extension to the describing function concept and is suitable for a general class of complex Gaussian input signals. The approach is validated through comparison with transistor level simulations and measurements performed on a single chip SOPA realized in 65 nm CMOS technology, for three types of input signal.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:58 ,  Issue: 8 )