Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Distributed Clustering Using Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Forero, P.A. ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Cano, A. ; Giannakis, G.B.

Clustering spatially distributed data is well motivated and especially challenging when communication to a central processing unit is discouraged, e.g., due to power constraints. Distributed clustering schemes are developed in this paper for both deterministic and probabilistic approaches to unsupervised learning. The centralized problem is solved in a distributed fashion by recasting it to a set of smaller local clustering problems with consensus constraints on the cluster parameters. The resulting iterative schemes do not exchange local data among nodes, and rely only on single-hop communications. Performance of the novel algorithms is illustrated with simulated tests on synthetic and real sensor data. Surprisingly, these tests reveal that the distributed algorithms can exhibit improved robustness to initialization than their centralized counterparts.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:5 ,  Issue: 4 )