By Topic

Data mining in a large database environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Y. Sung ; Dept. of Inf. Syst. & Comput. Sci., Nat. Univ. of Singapore, Singapore ; K. Wang ; L. Chua

Data mining, the process of discovering hidden and potentially useful information from very large databases, has been recognized as one of the most promising research topics in the 1990s. The essential problem faced in the mining of association rules is the generation of large items, which are items that are present in at least s% (minimal support) of the total database tuples. As the large items and their counts information usually require much storage space, the minimal cover concept is introduced to achieve reductions in the storage size. Percentage contour, an extension of minimal cover, is further introduced to aid in the handling of large databases

Published in:

Systems, Man, and Cybernetics, 1996., IEEE International Conference on  (Volume:2 )

Date of Conference:

14-17 Oct 1996