By Topic

A new approach in distributed multisensor tracking systems based on Kalman filter methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cherchar, A. ; Dept. Autom., Ecole Militaire Polytech., Bordj el Bahri, Algeria ; Belouchrani, A. ; Chonavel, T.

In multisensor tracking systems, the state fusion also known as ”track to track” fusion is a crucial issue where the derivation of the ”best” track combination is obtained according to a stochastic criteria in a minimum variance sense. Recently, sub-optimal weighted combination fusion algorithms involving matrices and scalars were developed. However, hence they only depend on the initial parameters of the system motion model and noise characteristics, these techniques are not robust against erroneous measures and unstable environment. To overcome this drawbacks, this work introduces a new approach to the optimal decentralized state fusion that copes with erroneous observations and system shortcomings. The simulations results show the effectiveness of the proposed approach. Moreover, the reduced complexity of the designed algorithm is well suited for real-time implementation.

Published in:

Information Fusion (FUSION), 2010 13th Conference on

Date of Conference:

26-29 July 2010