By Topic

An introduction to Gaussian processes for the Kalman filter expert

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Steven Reece ; Robotics Research Group, Dept. Engineering Science, Oxford University, UK ; Stephen Roberts

We examine the close relationship between Gaussian processes and the Kalman filter and show how Gaussian processes can be interpreted using familiar Kalman filter mathematical concepts. We use this insight to develop a novel hybrid filter, which we call the KFGP, for spatial-temporal modelling. The KFGP uses Gaussian process kernels to model the spatial field while exploiting efficient Kalman filter state-based approaches to model the temporal component. We also develop a Gaussian process kernel for the familiar Kalman filter near constant acceleration model.

Published in:

Information Fusion (FUSION), 2010 13th Conference on

Date of Conference:

26-29 July 2010