Cart (Loading....) | Create Account
Close category search window
 

Millimeter-Wave Frequency Doubler With Transistor Grounded-Shielding Structure in {\hbox {0.13-}}\mu{\hbox {m}} SiGe BiCMOS Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lei Wang ; Inst. of Microelectron., Agency for Sci., Technol. & Res. (A*STAR), Singapore, Singapore ; Yong-Zhong Xiong ; Bo Zhang ; San-Ming Hu
more authors

A low conversion-loss monolithic frequency doubler has been developed for D-band signal generation in 0.13-μm SiGe BiCMOS technology. The circuit uses a single-transistor topology with a novel grounded-shielding structure, which can efficiently reduce the parasitic feedback effect between collector and base of a HBT to achieve frequency multiplication. The measurement results show that the doubler exhibits minimum ~3.2-dB conversion loss at the output frequency of 134 GHz with the efficiency of ~5.8% and maximum -1.4-dBm second-harmonic output power at the output frequency of 132 GHz with the efficiency of ~7%, respectively. Moreover, both input and output return loss are better than 10 dB for the input frequency from 64 to 69 GHz and the corresponding doubled output frequency range. In addition, the estimated rejection of the fundamental signal is better than 20 dB.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:59 ,  Issue: 5 )

Date of Publication:

May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.