By Topic

Optimum Linear Design of Two-Hop MIMO Relay Networks With QoS Requirements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Youhua Fu ; Sch. of Electron. Sci. & Eng., Nanjing Univ. of Posts & Telecommun., Nanjing, China ; Luxi Yang ; Wei-ping Zhu ; Chen Liu

This paper investigates the optimal design issue of general two-hop amplify-and-forward (AF) MIMO relay networks with one source, one destination and multiple relays, each having multiple antennas. Beginning with the study of the mean-square error (MSE) matrix of the system and the use of Wiener filter for the destination processing, a constrained optimization problem with respect to the unknown relay precoder matrix is formulated with a goal of minimizing the total relay transmit power subject to the MSE-based quality of service (QoS) requirement on each data stream. As the original optimization problem is very difficult to solve, a lower bound of the cost function is pursued to achieve an approximate optimization problem. The modified problem is then solved under the perfect channel state information (CSI) condition using the diagonalization method along with the majorization theory to obtain optimal relay precoder with either nonoptimal or optimal source precoding. It is shown that a convex relay precoding solution is available in the case of nonoptimal source precoding whereas a joint optimal source and relay precoder can be obtained through a multilevel waterfilling algorithm. The optimal design of the relay network under imperfect CSI condition is also considered by modifying the optimization problem with the channel mean and covariance matrix, leading to a robust optimization design of the relay precoder. The proposed technique is validated by Monto Carlo simulations and is also compared with one existing method.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 5 )