By Topic

Detection of Abnormal Living Patterns for Elderly Living Alone Using Support Vector Data Description

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jae Hyuk Shin ; Interdiscipl. Program on Biomed. Eng., Seoul Nat. Univ., Seoul, South Korea ; Boreom Lee ; Kwang Suk Park

In this study, we developed an automated behavior analysis system using infrared (IR) motion sensors to assist the independent living of the elderly who live alone and to improve the efficiency of their healthcare. An IR motion-sensor-based activity-monitoring system was installed in the houses of the elderly subjects to collect motion signals and three different feature values, activity level, mobility level, and nonresponse interval (NRI). These factors were calculated from the measured motion signals. The support vector data description (SVDD) method was used to classify normal behavior patterns and to detect abnormal behavioral patterns based on the aforementioned three feature values. The simulation data and real data were used to verify the proposed method in the individual analysis. A robust scheme is presented in this paper for optimally selecting the values of different parameters especially that of the scale parameter of the Gaussian kernel function involving in the training of the SVDD window length, T of the circadian rhythmic approach with the aim of applying the SVDD to the daily behavior patterns calculated over 24 h. Accuracies by positive predictive value (PPV) were 95.8% and 90.5% for the simulation and real data, respectively. The results suggest that the monitoring system utilizing the IR motion sensors and abnormal-behavior-pattern detection with SVDD are effective methods for home healthcare of elderly people living alone.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:15 ,  Issue: 3 )