Cart (Loading....) | Create Account
Close category search window
 

Hole Effective Masses as a Booster of Self-Consistent Six-Band k \cdot p Simulation in Inversion Layers of pMOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ming-Jer Chen ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Chien-Chih Lee ; Kuan-Hao Cheng

Self-consistently solving the Schrödinger and Poisson's equations in the six-band k.p context can yield the valence-band structure in the inversion layers of pMOSFETs. In this numerically demanding process, the central processing unit (CPU) time is extraordinarily long. To overcome the hurdle, we construct a novel computational accelerator to intrinsically boost a self-consistent six-band k.p simulation. This accelerator comprises a triangular-potential-based six-band k.p simulator, a hole effective mass approximation (EMA) technique, and an electron analogy version of the self-consistent Schrödinger and Poisson's equations solver. The outcome of the accelerator furnishes the initial solution of the confining electrostatic potential and is likely close to the realistic one, which is valid for different temperatures, substrate doping concentrations, inversion hole densities, and surface orientations. The results on (001) and (110) substrates are supported by those published in the literature. The overall CPU time is reduced down to around 8% of that without the accelerator. This is the first successful demonstration of the EMA in the self-consistent hole subband structure calculation. The application of the proposed accelerator to more general situations is projected as well.

Published in:

Electron Devices, IEEE Transactions on  (Volume:58 ,  Issue: 4 )

Date of Publication:

April 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.