By Topic

A Biologically Inspired Architecture for an Autonomous and Social Robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Malfaz, M. ; Robot. Lab., Carlos III Univ. of Madrid, Leganes, Spain ; Castro-Gonzalez, A. ; Barber, R. ; Salichs, M.A.

Lately, lots of effort has been put into the construction of robots able to live among humans. This fact has favored the development of personal or social robots, which are expected to behave in a natural way. This implies that these robots could meet certain requirements, for example, to be able to decide their own actions (autonomy), to be able to make deliberative plans (reasoning), or to be able to have an emotional behavior in order to facilitate human-robot interaction. In this paper, the authors present a bioinspired control architecture for an autonomous and social robot, which tries to accomplish some of these features. In order to develop this new architecture, authors have used as a base a prior hybrid control architecture (AD) that is also biologically inspired. Nevertheless, in the later, the task to be accomplished at each moment is determined by a fix sequence processed by the Main Sequencer. Therefore, the main sequencer of the architecture coordinates the previously programmed sequence of skills that must be executed. In the new architecture, the main sequencer is substituted by a decision making system based on drives, motivations, emotions, and self-learning, which decides the proper action at every moment according to robot's state. Consequently, the robot improves its autonomy since the added decision making system will determine the goal and consequently the skills to be executed. A basic version of this new architecture has been implemented on a real robotic platform. Some experiments are shown at the end of the paper.

Published in:

Autonomous Mental Development, IEEE Transactions on  (Volume:3 ,  Issue: 3 )