Cart (Loading....) | Create Account
Close category search window

Prediction of EMI from two-channel differential signaling system based on imbalance difference model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

In a differential transmission line, a large common-mode radiation is excited due to asymmetry. To suppress the radiation, the differential line must be designed electrically symmetric. In this paper, the imbalance difference model, which was proposed by the authors for estimation of common-mode radiation, is extended to apply the differential signaling system. The authors focus on two pairs of differential transmission lines with asymmetric property, which consists of an adjacent return plane and signal lines which are placed close to an edge of the return plane. The authors define five transmission modes; two normal modes, two primary common modes and a secondary common mode. In these transmission modes, the secondary common mode radiation is dominant, and the authors evaluate the radiation using the imbalance difference model. To reduce the common-mode radiation, placing a guard trace which has the same potential as that of the return plane, we can control the imbalance and reduce common-mode radiation even the transmission line has asymmetry. The reduction of common-mode radiation can be estimated quantitatively by calculation of the imbalance of the transmission line.

Published in:

Electromagnetic Compatibility (EMC), 2010 IEEE International Symposium on

Date of Conference:

25-30 July 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.