Cart (Loading....) | Create Account
Close category search window
 

Document Clustering in Correlation Similarity Measure Space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Taiping Zhang ; Dept. of Comput. Sci., Chongqing Univ., Chongqing, China ; Yuan Yan Tang ; Bin Fang ; Yong Xiang

This paper presents a new spectral clustering method called correlation preserving indexing (CPI), which is performed in the correlation similarity measure space. In this framework, the documents are projected into a low-dimensional semantic space in which the correlations between the documents in the local patches are maximized while the correlations between the documents outside these patches are minimized simultaneously. Since the intrinsic geometrical structure of the document space is often embedded in the similarities between the documents, correlation as a similarity measure is more suitable for detecting the intrinsic geometrical structure of the document space than euclidean distance. Consequently, the proposed CPI method can effectively discover the intrinsic structures embedded in high-dimensional document space. The effectiveness of the new method is demonstrated by extensive experiments conducted on various data sets and by comparison with existing document clustering methods.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:24 ,  Issue: 6 )

Date of Publication:

June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.