By Topic

Improved Decimal Floating-Point Logarithmic Converter Based on Selection by Rounding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dongdong Chen ; Dept. of Electr. & Comput. Eng., Univ. of Saskatchewan, Sasaktoon, SK, Canada ; Han, Liu ; Younhee Choi ; Seok-Bum Ko

This paper presents the algorithm and architecture of the decimal floating-point (DFP) logarithmic converter, based on the digit-recurrence algorithm with selection by rounding. The proposed approach can compute faithful DFP logarithm results for any one of the three DFP formats specified in the IEEE 754-2008 standard. In order to optimize the latency for the proposed design, we mainly integrate the following novel features: 1) using the redundant carry-save representation of the data path; 2) reducing the number of iterations by determining the number of initial iteration; and 3) retiming and balancing the delay of the proposed architecture. The proposed architecture is synthesized with STM 90-nm standard cell library and the results show that the critical path delay and the number of clock cycles of the proposed Decimal64 logarithmic converter are 1.55 ns (34.4 FO4) and 19, respectively, and the total hardware complexity is 43,572 NAND2 gates. The delay estimation results of the proposed architecture show that its latency is close to that of the binary radix-16 logarithmic converter, and that it has a significant decrease on latency compared with a recently published high performance CORDIC implementation.

Published in:

Computers, IEEE Transactions on  (Volume:61 ,  Issue: 5 )