Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Approximating Rate-Distortion Graphs of Individual Data: Experiments in Lossy Compression and Denoising

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
de Rooij, S. ; Centrum Wiskunde & Inf. (CWI), Amsterdam, Netherlands ; Vitanyi, P.M.B.

Classical rate-distortion theory requires specifying a source distribution. Instead, we analyze rate-distortion properties of individual objects using the recently developed algorithmic rate-distortion theory. The latter is based on the noncomputable notion of Kolmogorov complexity. To apply the theory we approximate the Kolmogorov complexity by standard data compression techniques, and perform a number of experiments with lossy compression and denoising of objects from different domains. We also introduce a natural generalization to lossy compression with side information. To maintain full generality we need to address a difficult searching problem. While our solutions are therefore not time efficient, we do observe good denoising and compression performance.

Published in:

Computers, IEEE Transactions on  (Volume:61 ,  Issue: 3 )