By Topic

Extensions and Improvements to the Chordal Graph Approach to the Multistate Perfect Phylogeny Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gysel, R. ; Dept. of Comput. Sci., Univ. of California, Davis, CA, USA ; Gusfield, D.

The multistate perfect phylogeny problem is a classic problem in computational biology. When no perfect phylogeny exists, it is of interest to find a set of characters to remove in order to obtain a perfect phylogeny in the remaining data. This is known as the character removal problem. We show how to use chordal graphs and triangulations to solve the character removal problem for an arbitrary number of states, which was previously unsolved. We outline a preprocessing technique that speeds up the computation of the minimal separators of a graph. Minimal separators are used in our solution to the missing data character removal problem and to Gusfield's solution of the perfect phylogeny problem with missing data.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:8 ,  Issue: 4 )