By Topic

Optimization of Resource Provisioning Cost in Cloud Computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chaisiri, S. ; Sch. of Comput. Eng., Nanyang Technol. Univ. (NTU), Singapore, Singapore ; Bu-Sung Lee ; Niyato, D.

In cloud computing, cloud providers can offer cloud consumers two provisioning plans for computing resources, namely reservation and on-demand plans. In general, cost of utilizing computing resources provisioned by reservation plan is cheaper than that provisioned by on-demand plan, since cloud consumer has to pay to provider in advance. With the reservation plan, the consumer can reduce the total resource provisioning cost. However, the best advance reservation of resources is difficult to be achieved due to uncertainty of consumer's future demand and providers' resource prices. To address this problem, an optimal cloud resource provisioning (OCRP) algorithm is proposed by formulating a stochastic programming model. The OCRP algorithm can provision computing resources for being used in multiple provisioning stages as well as a long-term plan, e.g., four stages in a quarter plan and twelve stages in a yearly plan. The demand and price uncertainty is considered in OCRP. In this paper, different approaches to obtain the solution of the OCRP algorithm are considered including deterministic equivalent formulation, sample-average approximation, and Benders decomposition. Numerical studies are extensively performed in which the results clearly show that with the OCRP algorithm, cloud consumer can successfully minimize total cost of resource provisioning in cloud computing environments.

Published in:

Services Computing, IEEE Transactions on  (Volume:5 ,  Issue: 2 )