By Topic

Hierarchical Online Problem Classification for IT Support Services

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yang Song ; IBM Research, Hawthrone ; Anca Sailer ; Hidayatullah Shaikh

The overwhelming amount of various monitoring and log data generated in multitier IT systems makes problem determination one of the most expensive and labor-intensive tasks in IT Services arena. Particularly the initial step of problem classification is complicated by error propagation making secondary problems surfacing on multiple dependent resources. In this paper, we propose to automate the process of problem classification by leveraging machine learning. The main focus is to categorize the problem a user experiences by recognizing the real root cause specificity leveraging available training data such as monitoring and logs across the systems. We transform the structure of the problem into a hierarchy using an existing taxonomy. We then propose an efficient hierarchical incremental learning algorithm which is capable of adjusting its internal local classifier parameters in realtime. Comparing to the traditional batch learning algorithms, this online solution decreases the computational complexity of the training process by learning from new instances on an incremental fashion. Our approach significantly reduces the memory required to store the training instances. We demonstrate the efficiency of our approach by learning hierarchical problem patterns for several issues occurring in distributed web applications. Experimental results show that our approach substantially outperforms previous methods.

Published in:

IEEE Transactions on Services Computing  (Volume:5 ,  Issue: 3 )