Cart (Loading....) | Create Account
Close category search window

Combined Probability Approach and Indirect Data-Driven Method for Bearing Degradation Prognostics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Caesarendra, W. ; Sch. of Mech. Eng., Pukyong Nat. Univ., Pusan, South Korea ; Widodo, A. ; Pham Hong Thom ; Bo-Suk Yang
more authors

This study proposes an application of relevance vector machine (RVM), logistic regression (LR), and autoregressive moving average/generalized autoregressive conditional heteroscedasticity (ARMA/GARCH) models to assess failure degradation based on run-to-failure bearing simulating data. Failure degradation is calculated by using an LR model, and then regarded as the target vectors of the failure probability for training the RVM model. A multi-step-ahead method-based ARMA/GARCH is used to predict censored data, and its prediction performance is compared with one of Dempster-Shafer regression (DSR) method. Furthermore, RVM is selected as an intelligent system, and trained by run-to-failure bearing data and the target vectors of failure probability obtained from the LR model. After training, RVM is employed to predict the failure probability of individual units of bearing samples. In addition, statistical process control is used to analyze the variance of the failure probability. The result shows the novelty of the proposed method, which can be considered as a valid machine degradation prognostic model.

Published in:

Reliability, IEEE Transactions on  (Volume:60 ,  Issue: 1 )

Date of Publication:

March 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.