By Topic

Identification of a Class of Nonlinear Autoregressive Models With Exogenous Inputs Based on Kernel Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guoqi Li ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Changyun Wen ; Wei Xing Zheng ; Yan Chen

In this paper, we propose a new approach to identify a new class of nonlinear autoregressive models with exogenous inputs (NARX) based on kernel machine and space projection (KMSP). The well-known Hammerstein-Wiener model which includes blocks of nonlinear static functions in series with a linear dynamic block is a subset of the NARX models considered. In the KMSP based approach, kernel machine is used to represent the functions and space projection to separate the represented functions. We also discuss two possible ambiguities and give conditions to avoid such ambiguities. The asymptotic behavior of the proposed approach is analyzed. The performance of the proposed method is verified by simulation studies.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 5 )