By Topic

Spoken Language Derived Measures for Detecting Mild Cognitive Impairment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Brian Roark ; Center for Spoken Language Understanding, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA ; Margaret Mitchell ; John-Paul Hosom ; Kristy Hollingshead
more authors

Spoken responses produced by subjects during neuropsychological exams can provide diagnostic markers beyond exam performance. In particular, characteristics of the spoken language itself can discriminate between subject groups. We present results on the utility of such markers in discriminating between healthy elderly subjects and subjects with mild cognitive impairment (MCI). Given the audio and transcript of a spoken narrative recall task, a range of markers are automatically derived. These markers include speech features such as pause frequency and duration, and many linguistic complexity measures. We examine measures calculated from manually annotated time alignments (of the transcript with the audio) and syntactic parse trees, as well as the same measures calculated from automatic (forced) time alignments and automatic parses. We show statistically significant differences between clinical subject groups for a number of measures. These differences are largely preserved with automation. We then present classification results, and demonstrate a statistically significant improvement in the area under the ROC curve (AUC) when using automatic spoken language derived features in addition to the neuropsychological test scores. Our results indicate that using multiple, complementary measures can aid in automatic detection of MCI.

Published in:

IEEE Transactions on Audio, Speech, and Language Processing  (Volume:19 ,  Issue: 7 )