Cart (Loading....) | Create Account
Close category search window
 

Analysis and Design of Self-Oscillating Full-Bridge Electronic Ballast for Metal Halide Lamp at 2.65-MHz Operating Frequency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ray-Lee Lin ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Yong-Fa Chen ; Yan-Yu Chen

This paper presents the analysis and design of the self-oscillating full-bridge electronic ballast for the metal halide lamp at 2.65-MHz operating frequency. In order to avoid the acoustic-resonance problem of the metal halide lamp and meet the electromagnetic interference limitation by International Electrotechnical Commission (IEC) regulation, the self-oscillating full-bridge electronic ballast is operated at 2.65-MHz radio frequency (RF). However, the effect caused by the gate-to-source capacitor Cgs of the mosfets on the self-oscillating gate-drive network becomes significant to influence the design of the operating frequency at RF. Therefore, the gate-to-source capacitor Cgs of the mosfets is considered to derive the design equation of the magnetizing inductor for the current transformer in the self-oscillating gate-drive network. Finally, based on the prototype circuit of a 35-W self-oscillating full-bridge electronic ballast with constant-lamp-current control and no-lamp-protection scheme at 2.65-MHz operating frequency, the SIMPLIS simulation and experimental results are used to validate the effect from gate-to-source capacitor Cgs, the proposed design equation, and the design criteria.

Published in:

Power Electronics, IEEE Transactions on  (Volume:27 ,  Issue: 3 )

Date of Publication:

March 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.