Cart (Loading....) | Create Account
Close category search window

Digital-signal-processor-based DC/AC inverter with integral-compensation terminal sliding-mode control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chang, F.-J. ; Dept. of Electr. Eng., Nat. United Univ., Miaoli, Taiwan ; Chang, E.-C. ; Liang, T.-J. ; Chen, J.-F.

Classic terminal sliding-mode control (TSMC) has finite system-state convergence time and is robust against system disturbances and uncertainties, but TSMC may suffer from steady-state error problems under disturbed-system conditions. This study proposes to improve the performance of TSMC by the addition of integral compensation, which eliminates steady-state errors in the DC/AC inverter. Thus, the proposed controller provides robust performance in controlling the DC/AC inverter output to track the sinusoidal reference at steady state, and also provides fast response under varying load conditions. A real-time digital-signal-processor-based laboratory prototype is implemented to confirm the theoretical analysis and effectiveness of the proposed controller.

Published in:

Power Electronics, IET  (Volume:4 ,  Issue: 1 )

Date of Publication:

January 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.