By Topic

A low-power implantable device for epileptic seizure detection and neurostimulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Salam, M.T. ; Polystim Neurotechnologies Lab., Ecole Polytech. de Montrealx, QC, Canada ; Dang Khoa Nguyen ; Sawan, M.

In this paper, we present the design of a low-power closed-loop neurostimulator (CLNS) as an adjunctive treatment for patients with refractory partial epilepsy. The CLNS combines epileptic seizure detection with simultaneous electrical stimulation feedback. The system amplifies the neural signal with adjustable gain, detects epileptic low-voltage fast-activity, and generates programmable stimulation currents. The implemented seizure detector is based on a detection algorithm validated in Matlab tools and was tested using intracerebral electroencephalographic (iEEG) recordings from a patient with drug-resistant epilepsy. The amplifier, epileptic-seizure detector and electric stimulator were implemented using CMOS 0.18-μm process. The iEEG were assessed by the proposed CMOS building blocks and the predefined seizure suppression biphasic electrical stimulations were administrated at 2 to 3 sec after electrographical seizure onsets. The simulated power consumption of the CLNS has showed that the system could run on a button cell battery for more than 8 years.

Published in:

Biomedical Circuits and Systems Conference (BioCAS), 2010 IEEE

Date of Conference:

3-5 Nov. 2010