By Topic

A Dynamic Clustering Based on Hybrid PS-ACO for Recognizing Oil-Bearing Reservoir

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Li Yan-xiao ; Luoyang Sci. & Technol. Inst., Luoyang, China ; Yuan Ke-hong ; Tong Xin-an ; Zhu Ke-jun
more authors

A dynamic clustering algorithm based on hybrid particle swarm-ant colony optimization (PS-ACO) algorithm is presented in the paper. In the algorithm, the number of cluster is dynamic, ACO algorithm is modified by particle swarm optimization (PSO), both the external function and internal function are used to measure the quality evaluation for clustering. The optimal partition is fulfilled by improved PS-ACO algorithm. With its application in recognizing oil-bearing reservoir, the result of simulation indicates that Jaccard index, the external function, is maximum and the internal function, the sum of variance between the object and the center in a cluster is minimum when the cluster number is four. Thus the algorithm has the preferable capability in forecasting and verifying aspects in recognizing oil-bearing reservoir.

Published in:

Computational and Information Sciences (ICCIS), 2010 International Conference on

Date of Conference:

17-19 Dec. 2010