By Topic

Hybrid Map Task Scheduling for GPU-Based Heterogeneous Clusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Koichi Shirahata ; Tokyo Inst. of Technol., Tokyo, Japan ; Hitoshi Sato ; Satoshi Matsuoka

MapReduce is a programming model that enables efficient massive data processing in large-scale computing environments such as supercomputers and clouds. Such large-scale computers employ GPUs to enjoy its good peak performance and high memory bandwidth. Since the performance of each job is depending on running application characteristics and underlying computing environments, scheduling MapReduce tasks onto CPU cores and GPU devices for efficient execution is difficult. To address this problem, we have proposed a hybrid scheduling technique for GPU-based computer clusters, which minimizes the execution time of a submitted job using dynamic profiles of Map tasks running on CPU cores and GPU devices. We have implemented a prototype of our proposed scheduling technique by extending MapReduce framework, Hadoop. We have conducted some experiments for this prototype by using a K-means application as a benchmark on a supercomputer. The results show that the proposed technique achieves 1.93 times faster than the Hadoop original scheduling algorithm at 64 nodes (1024 CPU cores and 128 GPU devices). The results also indicate that the performance of map tasks, including both CPU and GPU tasks, is significantly affected by the overhead of map task invocation in the Hadoop framework.

Published in:

Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second International Conference on

Date of Conference:

Nov. 30 2010-Dec. 3 2010