By Topic

Modeling the Runtime Integrity of Cloud Servers: A Scoped Invariant Perspective

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jinpeng Wei ; Florida Int. Univ., Miami, FL, USA ; Pu, C. ; Rozas, C.V. ; Rajan, A.
more authors

One of the underpinnings of Cloud Computing security is the runtime integrity of individual Cloud servers. Due to the on-going discovery of runtime software vulnerabilities like buffer overflows, it is critical to be able to gauge the integrity of a Cloud server as it operates. In this paper, we propose scoped invariants as a primitive for analyzing the software system for its integrity properties. We report our experience with the modeling and detection of scoped invariants. The Xen Virtual Machine Manager is used for a case study. Our research detects a set of essential scoped invariants that are critical to the runtime integrity of Xen. One such property, that the addressable memory limit of a guest OS must not include Xen's code and data, is indispensable for Xen's guest isolation mechanism. The violation of this property demonstrates that the attacker only needs to modify a single byte in the Global Descriptor Table to achieve his goal.

Published in:

Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second International Conference on

Date of Conference:

Nov. 30 2010-Dec. 3 2010