By Topic

Video object pursuit by tri-tracker with on-line learning from positive and negative candidates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lu, H. ; Dept. of Electron. Eng., Dalian Univ. of Technol., Dalian, China ; Wang, D. ; Zhang, R. ; Chen, Y.-W.

Based on chain code, an improved Hough detection method for head detection is proposed, with which moving regions of objects are determined. During tracking process, we present a tri-tracking method (tri-tracker), on-line trained by positive and negative candidates, for tracking objects. The tracker trains three support vector machines (SVMs) initialised with a small number of labelled frames and updates the classifiers in a collaborative fashion, in which, an object is represented using a local binary pattern (LBP) histogram, RGB colour histogram and pixel-pattern-based texture feature (PPBTF) histogram, respectively. Based on the probability map created by each classifier, the final probability map forms by combing three individual probability maps. And then the peak of final probability map, which we consider as the object's position, is found by mean shift. Experiments on several video sequences show the robustness and accuracy of our proposed method.

Published in:

Image Processing, IET  (Volume:5 ,  Issue: 1 )