Cart (Loading....) | Create Account
Close category search window

Asymptotically Optimal Model Estimation for Quantization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ozerov, A. ; METISS Res. Group, INRIA (Centre de Rech. Rennes Bretagne Atlantique), Rennes, France ; Kleijn, W.B.

Using high-rate theory approximations we introduce flexible practical quantizers based on possibly non-Gaussian models in both the constrained resolution (CR) and the constrained entropy cases. We derive model estimation criteria optimizing asymptotic (with increasing rate) quantizer performance. We show that in the CR case the optimal criterion is different from the maximum likelihood criterion commonly used for that purpose and introduce a new criterion that we call constrained resolution minimum description length (CR-MDL). We apply these principles to the generalized Gaussian scaled mixture model, which is accurate for many real-world signals. We provide an explanation of the reason why the CR-MDL improves quantization performance in the CR case and show that CR-MDL can compensate for a possible mismatch between model and data distribution. Thus, this criterion is of a great interest for practical applications. Our experiments apply the new quantization method to controllable artificial data and to the commonly used modulated lapped transform representation of audio signals. We show that both the CR-MDL criterion and a non-Gaussian modeling have significant advantages.

Published in:

Communications, IEEE Transactions on  (Volume:59 ,  Issue: 4 )

Date of Publication:

April 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.