Cart (Loading....) | Create Account
Close category search window
 

Tellurite Photonic Nanostructured Fiber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Meisong Liao ; Res. Center for Adv. Photon Technol., Toyota Technol. Inst., Nagoya, Japan ; Xin Yan ; Zhongchao Duan ; Suzuki, T.
more authors

In this paper, we address the challenges faced in the fabrication process of nanostructured fiber. We show that a slight nonuniformity of holes of the preform results in a difference in the added pressure in the holes of the fiber during the fabrication process. It may not be a notable problem for the microstructured fiber, but it can result in serious deformation or even collapse for nanostructured fiber. By using a model, we propose a distortion factor that indicates the distortion degree of the geometry of fiber compared with the geometry of preform. The hole size of preform is the most important variable to the distortion factor. A large hole size in the preform is of great significance in decreasing the distortion. We also show that when the temperature is increased, the surface tension is decreased, but the viscosity is decreased much more quickly, so the distortion becomes severe. For minimum distortion in the nanostructured fibers we demonstrate, preforms with comparatively large and uniform inner holes are fabricated by inflating with inert gas. By using such preforms, we fabricate hexagonal core and triangular core nanostructured fibers with the smallest size recorded. Supercontinuum generation from the nanostructured fiber is demonstrated. In this paper, the glass we use for the demonstration is a soft glass. By using polymer or silica glass, which is more suitable for nanostructure fabrication, and by controlling the uniformity of holes in the original cane more accurately, various nanostructured fibers with even smaller size and more complex structure, or nanowire array, should be able to be fabricated by the inflation method.

Published in:

Lightwave Technology, Journal of  (Volume:29 ,  Issue: 7 )

Date of Publication:

April1, 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.