By Topic

Dynamic and Contextual Information in HMM Modeling for Handwritten Word Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

This study aims at building an efficient word recognition system resulting from the combination of three handwriting recognizers. The main component of this combined system is an HMM-based recognizer which considers dynamic and contextual information for a better modeling of writing units. For modeling the contextual units, a state-tying process based on decision tree clustering is introduced. Decision trees are built according to a set of expert-based questions on how characters are written. Questions are divided into global questions, yielding larger clusters, and precise questions, yielding smaller ones. Such clustering enables us to reduce the total number of models and Gaussians densities by 10. We then apply this modeling to the recognition of handwritten words. Experiments are conducted on three publicly available databases based on Latin or Arabic languages: Rimes, IAM, and OpenHart. The results obtained show that contextual information embedded with dynamic modeling significantly improves recognition.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 10 )