By Topic

Cluster-Oriented Ensemble Classifier: Impact of Multicluster Characterization on Ensemble Classifier Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Verma, B. ; Center for Intell. & Networked Syst., Central Queensland Univ., North Rockhampton, QLD, Australia ; Rahman, A.

This paper presents a novel cluster-oriented ensemble classifier. The proposed ensemble classifier is based on original concepts such as learning of cluster boundaries by the base classifiers and mapping of cluster confidences to class decision using a fusion classifier. The categorized data set is characterized into multiple clusters and fed to a number of distinctive base classifiers. The base classifiers learn cluster boundaries and produce cluster confidence vectors. A second level fusion classifier combines the cluster confidences and maps to class decisions. The proposed ensemble classifier modifies the learning domain for the base classifiers and facilitates efficient learning. The proposed approach is evaluated on benchmark data sets from UCI machine learning repository to identify the impact of multicluster boundaries on classifier learning and classification accuracy. The experimental results and two-tailed sign test demonstrate the superiority of the proposed cluster-oriented ensemble classifier over existing ensemble classifiers published in the literature.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:24 ,  Issue: 4 )