By Topic

Fast Exact Algorithms for the Closest String and Substring Problems with Application to the Planted (L,d)-Motif Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhi-Zhong Chen ; Dept. of Math. Sci., Tokyo Denki Univ., Saitama, Japan ; Lusheng WAng

We present two parameterized algorithms for the closest string problem. The first runs in O(nL + nd · 17.97d) time for DNA strings and in O(nL + nd · 61.86d) time for protein strings, where n is the number of input strings, L is the length of each input string, and d is the given upper bound on the number of mismatches between the center string and each input string. The second runs in O(nL + nd · 13.92d) time for DNA strings and in O(nL + nd · 47.21d) time for protein strings. We then extend the first algorithm to a new parameterized algorithm for the closest substring problem that runs in O((n - 1)m2(L + d · 17.97d · m[log2(d+1)])) time for DNA strings and in O((n - 1)m2(L + d · 61.86d · m[log2(d+1)])) time for protein strings, where n is the number of input strings, L is the length of the center substring, L - 1 + m is the maximum length of a single input string, and d is the given upper bound on the number of mismatches between the center substring and at least one substring of each input string. All the algorithms significantly improve the previous bests. To verify experimentally the theoretical improvements in the time complexity, we implement our algorithm in C and apply the resulting program to the planted (L, d)-motif problem proposed by Pevzner and Sze in 2000. We compare our program with the previously best exact program for the problem, namely PMSPrune (designed by Davila et al. in 2007). Our experimental data show that our program runs faster for practical cases and also for several challenging cases. Our algorithm uses less memory too.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:8 ,  Issue: 5 )