By Topic

Stereo for robots: Quantitative evaluation of efficient and low-memory dense stereo algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Federico Tombari ; DEIS-ARCES, University of Bologna, Bologna, Italy ; Stefano Mattoccia ; Luigi Di Stefano

Despite the significant number of stereo vision algorithms proposed in literature in the last decade, most proposals are notably computationally demanding and/or memory hungry so that it is unfeasible to employ them in application scenarios requiring real-time or near real-time processing on platforms with limited resources such as embedded devices. In this paper, we have selected the subset of proposals that appears more suited to the above requirements and, since literature lacks a proper comparison between these methods, we propose a quantitative experimental evaluation aimed at highlighting the best performing approach under the two criteria of accuracy and efficiency. The evaluation is performed on a standard benchmark dataset as well as on a novel dataset, acquired by means of an active technique, characterized by realistic working conditions.

Published in:

Control Automation Robotics & Vision (ICARCV), 2010 11th International Conference on

Date of Conference:

7-10 Dec. 2010