By Topic

Design of a wheel-propeller-leg integrated amphibious robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jiancheng Yu ; State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China ; Yuangui Tang ; Xueqiang Zhang ; Chongjie Liu

The operation capabilities of robot in the amphibious environments (such as shallow water fields, surf zones, and beaches) are critical for military and civilian. In this paper, we introduce a novel amphibious robot with wheel-propeller-leg integrated driving devices, developed by Shenyang Institute of Automation, which can realize both crawling locomotion on the ground and swimming locomotion in the water without changing its driving devices. This paper describes the design of the overall robot structure, the design of the novel driving devices, and the design of the embedded control system, respectively. All the driving devices of the robot are driven by independent motor, thus the amphibious robot can conveniently switch its locomotion modes according to the operational environments. The embedded control system is a distributed control system based on CAN bus, which makes it is easy to expend sensors and devices for the robot in the future. Finally, the hydrodynamic performances of the wheel-propeller device are analyzed by using CFX hydrodynamic calculation software, and some primary experiments have been done for verifying the fundamental locomotion functions of the robot.

Published in:

Control Automation Robotics & Vision (ICARCV), 2010 11th International Conference on

Date of Conference:

7-10 Dec. 2010