By Topic

An approach for raising the accuracy of one-class classifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chi-Kai Wang ; Dept. of Mech. Eng., Chung Yuan Christian Univ., Chungli, Taiwan ; Yung Ting ; Yi-Hung Liu

The support vector data description (SVDD) is a method proposed to solve the problem of one-class classification. It models a hypersphere around the target set, and by the introduction of kernel functions, more flexible descriptions are obtained. In SVDD, the width parameter s and the penalty parameter c have to be given beforehand by the user. To automatically optimize the values for these parameters, the error on both the target and outlier data has to be estimated. Because no outlier examples are available, we propose a max-min range method for generating artificial outliers in this paper. By generating artificial outliers around the target set, the accuracy of classifiers will improve. At the last, we use four benchmark data sets: Iris, Wine, Balance-scale, and Ionosphere data base to validate the approach in this research indeed has better classification result.

Published in:

Control Automation Robotics & Vision (ICARCV), 2010 11th International Conference on

Date of Conference:

7-10 Dec. 2010