By Topic

Algebraic network coding approach to deterministic wireless relay networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
MinJi Kim ; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, 02139, USA ; Muriel Médard

The deterministic wireless relay network model, introduced by Avestimehr et al., has been proposed for approximating Gaussian relay networks. This model, known as the ADT network model, takes into account the broadcast nature of wireless medium and interference. Avestimehr et al. showed that the Min-cut Max-flow theorem holds in the ADT network. In this paper, we show that the ADT network model can be described within the algebraic network coding framework introduced by Koetter and Medard. We prove that the ADT network problem can be captured by a single matrix, called the system matrix. We show that the min-cut of an ADT network is the rank of the system matrix; thus, eliminating the need to optimize over exponential number of cuts between two nodes to compute the min-cut of an ADT network. We extend the capacity characterization for ADT networks to a more general set of connections. Our algebraic approach not only provides the Min-cut Max-flow theorem for a single unicast/multicast connection, but also extends to non-multicast connections such as multiple multicast, disjoint multicast, and two-level multicast. We also provide sufficiency conditions for achievability in ADT networks for any general connection set. In addition, we show that the random linear network coding, a randomized distributed algorithm for network code construction, achieves capacity for the connections listed above. Finally, we extend the ADT networks to those with random erasures and cycles (thus, allowing bi-directional links).

Published in:

Communication, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference on

Date of Conference:

Sept. 29 2010-Oct. 1 2010