By Topic

Multi-objective evolutionary algorithms based Interpretable Fuzzy models for microarray gene expression data analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhenyu Wang ; Comput. Lab., Oxford Univ., Oxford, UK ; Palade, V.

We believe the great interpretability of fuzzy models allow fuzzy-based methods to play a very important role in Microarray gene expression data analysis, but the advantages offered by fuzzy-based techniques in this application have not yet been fully explored in the literature. In this paper, we construct Multi-Objective Evolutionary Algorithms based Interpretable Fuzzy (MOEAIF) models for microarray gene expression data analysis. Our novel fuzzy models can significantly decrease the model complexity, and automatically balance the accuracy and interpretability of the models. The experimental studies have shown that relatively simple and small fuzzy rule bases, with satisfactory classification performance, have been successful found for challenging microarray gene expression datasets.

Published in:

Bioinformatics and Biomedicine (BIBM), 2010 IEEE International Conference on

Date of Conference:

18-21 Dec. 2010