By Topic

Discovering functional gene pathways associated with cancer heterogeneity via sparse supervised learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Kawano, S. ; Human Genome Center, Inst. of Med. Sci. Univ. of Tokyo, Tokyo, Japan ; Shimamura, T. ; Niida, A. ; Imoto, S.
more authors

We propose a statistical method for uncovering gene pathways that characterize cancer heterogeneity. To incorporate knowledge of the pathways into the model, we define a set of activities of pathways from microarray gene expression data based on the sparse probabilistic principal component analysis. A pathway activity logistic regression model is then formulated for cancer phenotype. To select pathway activities related to binary cancer phenotypes, we use the elastic net for the parameter estimation and derive a model selection criterion for selecting tuning parameters included in the model estimation. Our proposed method can also reverse-engineer gene networks based on the identified multiple pathways that enables us to discover novel gene-gene associations relating with the cancer phenotypes. We illustrate the whole process of the proposed method through the analysis of breast cancer gene expression data.

Published in:

Bioinformatics and Biomedicine (BIBM), 2010 IEEE International Conference on

Date of Conference:

18-21 Dec. 2010