Cart (Loading....) | Create Account
Close category search window
 

Identification and quantification of abundant species from pyrosequences of 16S rRNA by consensus alignment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yuzhen Ye ; Sch. of Inf. & Comput., Indiana Univ., Bloomington, IN, USA

16S rRNA gene profiling has recently been boosted by the development of pyrosequencing methods. A common analysis is to group pyrosequences into Operational Taxonomic Units (OTUs), such that reads in an OTU are likely sampled from the same species. However, species diversity estimated from error-prone 16S rRNA pyrosequences may be inflated because the reads sampled from the same 16S rRNA gene may appear different, and current OTU inference approaches typically involve time-consuming pairwise/multiple distance calculation and clustering. I propose a novel approach Abun-dantOTU based on a Consensus Alignment (CA) algorithm, which infers consensus sequences, each representing an OTU, taking advantage of the sequence redundancy for abundant species. Pyrosequencing reads can then be recruited to the consensus sequences to give quantitative information for the corresponding species. As tested on 16S rRNA pyrosequence datasets from mock communities with known species, Abun-dantOTU rapidly reported identified sequences of the source 16S rRNAs and the abundances of the corresponding species. AbundantOTU was also applied to 16S rRNA pyrosequence datasets derived from real microbial communities and the results are in general agreement with previous studies.

Published in:

Bioinformatics and Biomedicine (BIBM), 2010 IEEE International Conference on

Date of Conference:

18-21 Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.