By Topic

Truncation of protein sequences for fast profile alignment with application to subcellular localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Man-Wai Mak ; Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR ; Wei Wang ; Sun-Yuan Kung

We have recently found that the computation time of homology-based subcellular localization can be substantially reduced by aligning profiles up to the cleavage site positions of signal peptides, mitochondrial targeting peptides, and chloro-plast transit peptides [1]. While the method can reduce the profile alignment time by as much as 20 folds, it cannot reduce the computation time spent on creating the profiles. In this paper, we propose a new approach that can reduce both the profile creation time and profile alignment time. In the new approach, instead of cutting the profiles, we shorten the sequences by cutting them at the cleavage site locations. The shortened sequences are then presented to PSI-BLAST to compute the profiles. Experimental results and analysis of profile-alignment score matrices suggest that both profile creation time and profile alignment time can be reduced without sacrificing subcellular localization accuracy. Once a pairwise profile-alignment score matrix has been obtained, a one-vs-rest SVM classifier can be trained. To further reduce the training and recognition time of the classifier, we propose a perturbation discriminant analysis (PDA) technique. It was found that PDA enjoys a short training time as compared to the conventional SVM.

Published in:

Bioinformatics and Biomedicine (BIBM), 2010 IEEE International Conference on

Date of Conference:

18-21 Dec. 2010