Cart (Loading....) | Create Account
Close category search window
 

Protein 8-class secondary structure prediction using Conditional Neural Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhiyong Wang ; Toyota Technol. Inst. at Chicago, Chicago, IL, USA ; Feng Zhao ; Jian Peng ; Jinbo Xu

Compared to the protein 3-class secondary structure (SS) prediction, the 8-class prediction gains less attention and is also much more challenging, especially for proteins with few sequence homologs. This paper presents a new probabilistic method for 8-class SS prediction using Conditional Neural Fields (CNFs), a recently-invented probabilistic graphical model. This CNF method not only models complex relationship between sequence features and SS, but also exploits interdependency among SS types of adjacent residues. In addition to sequence profiles, our method also makes use of non-evolutionary information for SS prediction. Tested on the CB513 and RS126 datasets, our method achieves Q8 accuracy 64.9% and 64.7%, respectively, which are much better than the SSpro8 web server (51.0% and 48.0%, respectively). Our method can also be used to predict other structure properties (e.g., solvent accessibility) of a protein or the SS of RNA.

Published in:

Bioinformatics and Biomedicine (BIBM), 2010 IEEE International Conference on

Date of Conference:

18-21 Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.