By Topic

2 ,\times, 25-kV 50 Hz High-Speed Traction Power System: Short-Circuit Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Battistelli, L. ; Dept. of Electr. Eng., Univ. of Naples Federico II, Naples, Italy ; Pagano, M. ; Proto, D.

A 2×25-kV 50 Hz traction power system was analyzed and modeled in the time domain in order to simulate short-circuit conditions and to attain a practical method to identify the short circuit behavior of the traction system. In particular, due to the difficulty in assessing the track-line parameters which mainly depend on changing environmental conditions, the possibility of neglecting the capacitive parameters was analyzed. A complete model of the 2×25-kV 50 Hz traction power system was developed and validated through comparison with the results of referenced models and experimental tests performed on real systems. Simulations, addressed to reduce the short-circuit modeling complexity, demonstrate that neglecting the capacitive effects between conductors and to ground does not affect the calculation accuracy for standard analyses. The obtained results show that the proposed model can be remarkably useful for the traction system design as well as for investigating the effects of short-circuit conditions on other circuits, such as telecom circuits, power-supply equipment, and signaling track circuits.

Published in:

Power Delivery, IEEE Transactions on  (Volume:26 ,  Issue: 3 )